Studium rozwiązań konstrukcyjnych wysokoobrotowych silników reluktancyjnych przełączalnych

Piotr Bogusz, Mariusz Korkosz, Jan Prokop

1. Wstęp

Sprzęt gospodarstwa domowego (AGD) jest istotnym segmentem rynku napędów elektrycznych. W chwili obecnej jest on zdominowany przez napędy elektryczne z silnikami komutatorowymi prądu przemiennego. Zaletą silników komutatorowych jest łatwość sterowania, wadą - relatywnie niska trwałość z uwagi na istnienie zestyku komutator – szczotka. Jeżeli jednym z wymogów stosowanego napędu jest podwyższona trwałość, to należy stosować napędy elektryczne z komutacją elektroniczną. Jedną z odmian takich napędów są maszyny reluktancyjne przełączalne [1]. Są to bardzo niezawodne maszyny o znacznej trwałości limitowanej żywotnością zastosowanych łożysk. Sprawność przetwarzania energii jest wyższa niż w tradycyjnych silnikach komutatorowych, chociaż niższa niż w napędach bezszczotkowych z magnesami trwałymi. Brak magnesów w konstrukcji silnika jest wadą ze względu na niższą sprawność, ale też zaletą – ze względu na niższe koszty produkcji.

Celem niniejszej pracy jest analiza, na drodze obliczeń symulacyjnych, różnych rozwiązań konstrukcyjnych silników reluktancyjnych przełączalnych, możliwych do zastosowania w wysokoobrotowym napędzie sprzętu AGD. W pracy – przy uwzględnieniu ograniczeń technologicznych projektowanego napędu – analizowano właściwości sześciu wybranych konstrukcji silników SRM.

2. Wymagania układu napędowego i proponowane rozwiązania konstrukcyjne

Analizowany napęd wysokoobrotowy wymaga podwyższonej trwałości w stosunku do istniejących na rynku silników komutatorowych. Od projektowanego silnika wymaga się minimum 1000 godzin bezawaryjnej pracy. Czas pracy silnika wynika z założonej liczby godzin przypadającej na okres gwarantowany przez producenta. Od projektowanego silnika wymaga się wytwarzania mocy na wale Pout równej 700 W przy prędkości obrotowej $n = 45\,000$ obr/min. Sprawność napędu nie jest w tym przypadku najistotniejszym parametrem, chociaż oczywiście wskazane jest, aby była ona możliwie jak największa. Seryjnie produkowany silnik komutatorowy w tym punkcie pracy osiąga sprawność nieprzekraczającą 45%, chociaż jego sprawność maksymalna jest znacznie wyższa. Zatem należy przyjąć, że projektowany napęd powinien posiadać nieco wyższą sprawność w tym punkcie pracy. Średnica wałka silnika d_{shaft} nie powinna być mniejsza niż 10 mm. W trakcie projektowania nowego napędu założono, że tarcza wchodząca w skład turbiny do wytwarzania podciśnienia pozostanie niezmieniona. Pozostawiono również identyczną metodę pakietowania blach stojana. Z uwagi na wysoką prędkość obrotową w trakcie projektowania

STUDY SOLUTIONS OF THE HIGH SPEED SWITCHED RELUCTANCE MOTORS

Abstract: The article discusses the use of switched reluctance motors (SRM) for high speed drives home appliances. A comparison of two-phase 4/2 and three-phase 6/2 design motors, based on field calculations. Three machines was taken into consideration with: symmetric rotor, symmetric rotor with discrete air gap and asymmetric rotor with discrete air gap. For the two analyzed cases, the structure 4/2 and 6/2 static characteristics was calculated. Mechanical characteristics and efficiency of solution were determined and analyzed.

układu napędowego należy szczególną uwagę zwrócić na konieczność ograniczania strat w samym silniku. Straty w żelazie wysokoobrotowego silnika SRM są jednym z kluczowych czynników ograniczających sprawność wypadkową napędu. Zatem należy zaprojektować silnik tak, aby straty te zminimalizować. We wstępnym etapie projektowania rozpatrywano dwie możliwości ograniczania strat w żelazie, tj.:

- zastosowanie blachy o możliwie małej stratności;
- zmniejszenie częstotliwości przełączeń poszczególnych uzwojeń.

W pierwszym przypadku należy starać się zastosować blachę magnetyczną prądnicową o mniejszej stratności, np. blachę o grubości 0,35 mm zamiast 0,5 mm. Rozwiązanie to w praktyce jest trudne w realizacji z uwagi na problemy w pozyskaniu blachy magnetycznej izotropowej o grubości 0,35 mm. Dodatkowo w przypadku produkcji seryjnej taka blacha jest droższa i sprawia znacznie więcej problemów produkcyjnych. Znacznie korzystniejszym sposobem redukcji strat w żelazie jest ograniczenie częstotliwości przełączeń poszczególnych pasm. Oznacza to rozważenie konstrukcji maszyn, w których liczba biegunów wirnika jest sprowadzona do wartości minimalnej, czyli dwóch. W praktyce można analizować tylko konstrukcje jedno-, dwu- i trójpasmowe. Konstrukcje jednopasmowe, pozornie najatrakcyjniejsze, posiadają jednak poważną wadę, mianowicie charakteryzują się brakiem momentu rozruchowego. Dla wytworzenia momentu rozruchowego należy zastosować dodatkowy magnes lub uzwojenie rozruchowe [1]. W przypadku maszyn dwupasmowych moment rozruchowy można wytworzyć, stosując odpowiednią procedurę startową [2]. W ramach prac analizowano silniki reluktancyjne przełączalne dwupasmowe i trójpasmowe.

Silniki dwupasmowe przeznaczone do napędu wysokoobrotowego analizowano w konfiguracji 4/2. W trakcie projektowania konstrukcji silnika dwupasmowego uwzględniono: ograniczenia

<u>napędy i sterowanie</u>

Rys. 1. Przekroje zaprojektowanych stojanów silnika SRI a) dwupasmowego 4/2; b) trójpasmowego 6/2

związane z otworami montażowymi, średnicą zewnętrzną stojana d_{se} oraz średnicą wałka wirnika d_{shaft} . Dla konstrukcji standardowej silnika dwupasmowego o czterech biegunach stojana ($N_s = 4$) minimalna wartość kąta β_s nie powinna być mniejsza niż 45° [3]. W przypadku napędów wysokoobrotowych wskazane jest również stosowanie możliwie jak najmniejszej wartość kąta szerokości bieguna stojana β_s . W projekcie przyjęto wartość tego kąta równą $\beta_s = 45^\circ$. Biorąc pod uwagę dostępną przestrzeń żłobkową oraz wymaganą moc wyjściową przyjęto liczbę zwojów przypadających na jeden biegun równą $N_b = 108$. Na rys. 1 a przedstawiono zaprojektowany wykrój blachy stojana silnika reluktancyjnego przełączalnego dwupasmowego o konstrukcji 4/2.

W przypadku konstrukcji trójpasmowej minimalna wartość kąta bieguna stojana β_s wynosi 30°. Po uwzględnieniu ograniczeń konstrukcyjnych zaprojektowano geometrię stojana konstrukcji trójpasmowej 6/2, którą przedstawiono na rysunku 1 b. Uwzględniając dostępną przestrzeń żłobkową oraz liczbę pasm, dobrano dla tego przypadku liczbę zwojów przypadajacą na jeden biegun $N_b = 110$.

W obu przypadkach, tj. maszyny dwupasmowej 4/2 oraz maszyny trójpasmowej 6/2, możliwe są do zastosowania identyczne kształty wirników. Analizie poddano trzy, znane z literatury, a przedstawione na rys. 2, różne warianty wirników:

- wirnik symetryczny (rys. 2 a);
- wirnik symetryczny ze skokową szczeliną powietrzną (rys. 2 b);
- wirnik niesymetryczny ze skokową szczeliną powietrzną (rys. 2 c).

Rys. 3. Zależność momentu elektromagnetycznego T_e w funkcji kąta położenia wirnika θ dla prądu *I* = 4 A i różnych wartości kąta β_r

Rys. 5. Zależność momentu elektromagnetycznego T_e w funkcji kąta położenia wirnika θ dla prądu *I* = 4 A i różnych wartości parametru *b*

Rys. 7. Zależność wartości średniej momentu elektromagnetycznego T_{eav} w funkcji kąta β_{r2} dla prądu *I* = 4 A

Rys. 9. Zależność momentu elektromagnetycznego T_e w funkcji kąta położenia wirnika θ dla prądu I = 4 A i różnych wartości parametru b

rys. 10. Zależność indukcyjności własnej pasma L_{ph} w funkcji kąta położenia wirnika θ dla prądu I = 4 A i różnych wartości parametru b

W literaturze znane są jeszcze inne kształty wirników. Zaliczyć do nich można wirnik z profilowaną szczeliną powietrzną [4]. Jest to rozwiązanie dedykowane do aplikacji wymagających znacznego ograniczenia tętnień momentu elektromagnetycznego. Rozwiązanie z profilowaną szczeliną powietrzną można rozważać w przypadku analizy konstrukcji przeznaczonej do napędu robota kuchennego. W programie FEM zbudowano model symulacyjny i wyznaczono charakterystyki statyczne projektowanego silnika.

3. Analiza konstrukcji dwupasmowych

Analizie poddano trzy silniki dwupasmowe zbudowane w oparciu o stojan z rysunku 1 a oraz odpowiednio trzy wirniki przedstawione na rys. 2.

3.1. Konstrukcja dwupasmowa z wirnikiem symetrycznym

W przypadku silnika dwupasmowego z wirnikiem symetrycznym problemem jest rozruch silnika z każdego położenia wirnika ze względu na stosunkowo małe wartości momentu rozruchowego. Problem ten rozwiązuje się zazwyczaj stosując odpowiednią procedurę startową. W przypadku projektowanego napędu nie jest wymagana duża wartość momentu rozruchowego, który powinien wynosić około 0,1 N·m. Założona wartość kąta $\beta_s = 45^\circ$ narzuca jednocześnie minimalną wartość kąta bieguna wirnika $\beta_r = 45^\circ$. Na rys. 3 przedstawiono zależność momentu elektromagnetycznego T_e w funkcji położenia wirnika θ przy wymuszeniu I = 4 A dla kilku wartości kąta szerokości wirnika $\beta_r = 45^\circ$, 50°, 55°, 60°.

Zależności indukcyjności własnych L_{ph} od kąta położenia wirnika θ dla czterech wartości kąta szerokości wirnika β_r przedstawiono na rys. 4. Zmiana szerokości kąta bieguna wirnika wpływa w niewielkim stopniu na wytwarzaną wartość średnią T_{eav} momentu statycznego. Zmianie ulegają jednak wartości kątów brzegowych, które są zależne od wartości kąta β_r . Ma to przełożenie na dobór wartości kątów sterowania silnika.

3.2. Konstrukcja dwupasmowa z wirnikiem symetrycznym ze skokową szczeliną powietrzną

W przypadku konstrukcji wirnika o budowie symetrycznej, w którym występuje skokowa szczelina powietrzna (rys. 2 b), są do dyspozycji dwa parametry więcej niż w przypadku klasycznego wirnika. Kąt szerokości wirnika β_r składa się z sumy kątów β_{r1} i podwójnej wartości kąta β_{r2} . Dodatkowo występuje jeszcze parametr określający grubość dodatkowej szczeliny *b*. W rozważaniach przyjęto stałą wartość kąta $\beta_{r1} = \beta_s$. Dla wstępnie przyjętej wartości kąta $\beta_{r2} = 22,5^\circ$ określono wpływ parametru *b* na kształt charakterystyk momentu statycznego (rys. 5) i indukcyjności własnej (rys. 6) przy założeniu stałej wartości prądu pasma I = 4 A.

Dla uzyskania wymaganej wartości momentu należy odpowiednio dobrać wartość parametru *b*. Aby otrzymać wymaganą wartość momentu rozruchowego przy prądzie I = 4 A, przyjęto

Rys. 11. Zależność momentu elektromagnetycznego T_e w funkcji kąta położenia wirnika θ dla prądu I = 4 A i różnych wartości kąta β_r

Rys. 12. Zależność indukcyjności własnej pasma L_{ph} w funkcji kąta położenia wirnika θ dla prądu *I* = 4 A i różnych wartości kąta β_r

Rys. 16. Zależność stosunku indukcyjności L_{phmax}/L_{phmin} w funkcji kąta β_{r2} dla prądu / = 4 A

Rys. 17. Zależność momentu elektromagnetycznego T_e w funkcji kąta położenia wirnika θ dla prądu *I* = 4 A i różnych wartości parametru *b*

Rys. 18. Zależność indukcyjności własnej pasma L_{ph} w funkcji kąta położenia wirnika θ dla prądu *I* = 4 A i różnych wartości parametru *b*

b = 0,15 mm. Dla kąta $\beta_{r1} = \beta_s$ i parametru b = 0,15 mm określono wpływ kąta β_{r2} na charakterystyki statyczne momentu elektromagnetycznego oraz indukcyjność własną pasma przy założeniu, że I = 4 A.

Na rys. 7 przedstawiono zależność wartości średniej momentu elektromagnetycznego, natomiast na rys. 8 zależność stosunku indukcyjności położeń charakterystycznych L_{phmax}/L_{phmin} od kąta szerokości β_{r2} .

Największą wartość średnią momentu elektromagnetycznego T_{eav} uzyskano przy kącie $\beta_{r2} = 16^{\circ}$. Najkorzystniejszy stosunek L_{phmax}/L_{phmin} występuje natomiast przy kącie $\beta_{r2} = 12^{\circ}$.

3.3. Konstrukcja dwupasmowa z wirnikiem niesymetrycznym ze skokową szczeliną powietrzną

Konstrukcję z niesymetrycznym wirnikiem ze skokową szczeliną powietrzną przedstawiono na rys. 2 c. Szerokość kąta bieguna wirnika β_r jest równa sumie kątów β_{r1} i β_{r2} . Szerokość kąta β_{r2} nie powinna przekraczać wartości kąta β_s . W analizowanym przypadku kąt $\beta_s = 45^\circ$, a kąty β_{r1} i β_{r2} są sobie równe i wynoszą 45°. Pozostaje dobór odpowiedniej wartości parametru *b*. Na rys. 9 przedstawiono zależność momentu elektromagnetycznego T_e w funkcji kąta położenia wirnika θ przy założeniu stałej wartości prądu I = 4 A oraz skokowej zmianie wartości parametru *b*.

Dla uzyskania wymaganej wartości momentu rozruchowego parametr *b* nie powinien mieć wartości mniejszej niż 0,15 mm. Zależność indukcyjności własnej L_{ph} dla analizowanego przypadku przedstawiono na rys. 10.

_____ reklama

4. Analiza konstrukcji trójpasmowych

Dla konstrukcji trójpasmowych analizowano identyczne przypadki, jak dla konstrukcji dwupasmowych.

4.1. Konstrukcja trójpasmowa z wirnikiem symetrycznym

Na rysunkach 11–12 przedstawiono zależność momentu elektromagnetycznego T_e (rys. 11) oraz indukcyjności własnej L_{ph} (rys. 12) w funkcji położenia wirnika θ przy wymuszeniu I = 4 A dla czterech wartości kąta szerokości wirnika $\beta_r = 30^\circ$, 35°, 40°, 45°.

4.2. Konstrukcja trójpasmowa z wirnikiem symetrycznym ze skokową szczeliną powietrzną

W przypadku zastosowania rozwiązania z wirnikiem symetrycznym ze skokową szczeliną powietrzną minimalna wartość parametru *b* powinna być nie mniejsza niż 0,15 mm (rys. 13), podobnie jak w przypadku konstrukcji dwupasmowej. Indukcyjność własną L_{ph} przy zmianie parametru *b* przedstawiono na rys. 14. Na rys. 15 pokazano zależność wartości średniej momentu T_{eav} w funkcji kąta β_{r2} , przy założeniu wymuszenia prądowego I = 4 A oraz wartości parametru b = 0,15 mm. Największą wartość średnią momentu elektromagnetycznego uzyskano dla kąta $\beta_{r2} = 26^{\circ}$.

Na rysunku 16 przedstawiono stosunek indukcyjności położeń charakterystycznych L_{phmax}/L_{phmin} w funkcji kąta szerokości β_{r2} . Najkorzystniejszy stosunek indukcyjności położeń charakterystycznych L_{phmax}/L_{phmin} uzyskano dla kąta $\beta_{r2} = 19^\circ$.

Rys. 19. Zależność momentu elektromagnetycznego w funkcji kąta położenia wirnika analizowanych konstrukcji dwupasmowych

kąta położenia wirnika analizowanych konstrukcji trójpasmowych

Rys. 21. Zależność prądu pasmowego w funkcji kąta położenia wirnika analizowanych konstrukcji dwupasmowych

Rys. 25. Zależność sprawności wypadkowej w funkcji prędkości obrotowej konstrukcji dwupasmowych

Rys. 26. Zależność sprawności wypadkowej w funkcji prędkości obrotowej konstrukcji trójpasmowych

4.3. Konstrukcja trójpasmowa z wirnikiem niesymetrycznym ze skokową szczeliną powietrzną

Zależność momentu elektromagnetycznego T_e oraz indukcyjności własnej L_{ph} (rys. 18) w funkcji kąta położenia wirnika θ przy założeniu stałej wartości prądu I = 4 A oraz skokowej zmianie wartości parametru *b* dla wirnika z niesymetryczną skokową szczeliną powietrzną przedstawiono odpowiednio na rys. 17–18.

5. Analiza prądów i momentów

Na bazie modelu polowo-obwodowego wyznaczono zależności prądów i momentów elektromagnetycznych analizowanych konstrukcji dwu- i trójpasmowych. W modelu symulacyjnym założono, że każde pasmo silnika będzie zasilane z klasycznego półmostka typu H. Obliczenia przeprowadzano przy założeniu stałej prędkości obrotowej. Prędkość obrotową silnika n zmieniano w zakresie od 35000 do 50000 obr/min ze skokiem co 1000 obr/min. Parametry sterowania w każdym analizowanym przypadku dobierano dla uzyskania założonej mocy wyjściowej (P_{out} = 700 W) przy prędkości obrotowej n = 45000 obr/ min. Na rysunkach 19 i 20 przedstawiono zależność momentu elektromagnetycznego T_e w funkcji kąta położenia wirnika θ odpowiednio konstrukcji dwupasmowych (rys. 19) i trójpasmowych (rys. 20). Zależność jednego z prądów pasmowych w funkcji kata położenia wirnika przedstawiono na rysunku 21 dla konstrukcji dwupasmowych, natomiast dla trójpasmowych na rys. 22.

6. Charakterystyki mechaniczne oraz sprawności analizowanych konstrukcji

Na podstawie wyników badań symulacyjnych wyznaczono zależność mocy wyjściowej P_{out} analizowanych konstrukcji wysokoobrotowych silników reluktancyjnych przełączalnych. Została również wyznaczona sprawność wypadkowa badanych konstrukcji.

Na rys. 23–24 przedstawiono zależność mocy wyjściowej P_{out} w funkcji prędkości obrotowej *n* odpowiednio dla konstrukcji dwupasmowych (rys. 23) oraz trójpasmowych (rys. 24).

Na rys. 25 i 26 przedstawiono zależności sprawności w funkcji prędkości obrotowej rozpatrywanych konstrukcji dwupasmowych (rys. 25) i trójpasmowych (rys. 26).

7. Wnioski

W pracy, na drodze badań symulacyjnych za pomocą metod polowych, dokonano analizy rozwiązań konstrukcyjnych silników SRM przeznaczonych do napędu wysokoobrotowego. Dla określonych wymagań co do mocy i prędkości znamionowej oraz ograniczeń konstrukcyjnych przeanalizowano rozwiązania dwu- i trójpasmowe o minimalnej liczbie biegunów wirnika. Rozpatrywano trzy konstrukcje wirnika: symetryczną, symetryczną ze skokową szczeliną powietrzną i niesymetryczną ze skokową szczeliną powietrzną. Wszystkie zaprojektowane silniki do napędu wysokoobrotowego spełniają postawione wymagania co do mocy i prędkości obrotowej. Zarówno w przypadku konstrukcji dwupasmowej, jak i trójpasmowej najwyższą sprawność uzyskano w przypadku zastosowania wirnika symetrycznego, w którym kąt bieguna wirnika jest większy niż kąt bieguna stojana (wariant II). W przypadku silnika dwupasmowego najniższą sprawność uzyskano dla wariantu V, czyli wirnika o budowie niesymetrycznej. Jednocześnie jest to wariant, w którym najłatwiej wytworzyć wymagany moment rozruchowy. Ogólnie w przypadku konstrukcji dwupasmowej uzyskano nieznacznie wyższą sprawność (około 2%). Dla pełnego porównania badanych konstrukcji należy dodatkowo przeprowadzić analizę wibroakustyczną, co będzie dalszym etapem prac projektowych. Silniki dwupasmowe, z uwagi na mniejszą liczbę wymaganych elementów energoelektronicznych, będą potencjalnie tańsze w produkcji masowej.

8. Literatura

- [1] KRISHNAN R.: Switched Reluctance Motor Drives: Modeling, Simulation, Analysis, Design, and Applications, CRC Press, 2001.
- [2] HAMDY R., FLETCHER J., WILLIAMS B.W.: Bidirectional starting of a symmetrical two-phase switched reluctance machine, IEEE Transactions on Energy Conversion, vol. 15, No. 2, June 2000, pp. 211–217.
- [3] MILLER T.J.E.: *Electronic Control of Switched Reluctance Machines*, Newnes Power Engineering Series, 2001.
- [4] TOMCZEWSKI K., WRÓBEL K.: Jednoczesna optymalizacja kształtu obwodu magnetycznego i parametrów zasilania przełączalnego silnika reluktancyjnego, Przegląd Elektrotechniczny, 3/2009, s. 107–110.

Praca wykona w ramach projektu badawczego NN511 312 440. Badania przeprowadzono z zastosowaniem aparatury zakupionej w wyniku realizacji Projektu nr POPW.01.03.00-18-012/09 "Rozbudowa infrastruktury naukowo-badawczej Politechniki Rzeszowskiej" współfinansowanego ze środków Unii Europejskiej w ramach Programu Operacyjnego Rozwój Polski Wschodniej 2007-2013, Priorytet I. Nowoczesna Gospodarka, Działanie 1.3 Wspieranie innowacji.

dr inż. Piotr Bogusz, pbogu@prz.edu.pl dr inż. Mariusz Korkosz, mkosz@prz.edu.pl dr inż. Jan Prokop, jprokop@prz.edu.pl Politechnika Rzeszowska Wydział Elektrotechniki i Informatyki ul. W. Pola 2, 35-959 Rzeszów

reklama		